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Abstract. A continuum percolationmodel for heterogeneous mixtures of anionicconducting 
solid salt with an insulating second phase is introduced. In this model, the insulating phase 
is represented by spherical random voids (the Swiss Cheese model) which are allowed to 
overlap and are randomly distributed in a conducting matrix (the solid salt). A characteristic 
feature of the model is the existence of a highly conducting spherical shell surrounding the 
voids, representing the internal interface between the oxide particle and the conducting salt. 
The relevance of the model for describing the observed effects of insulating particle size on 
the conductivity of dispersed ionic conductors is critically discussed. 

1. Introduction 

Dispersed ionic conductors are random mixtures of a solid salt, e.g. AgI, LiI, with fine 
particles of an insulating second phase, such as A1203 or Si02.  These composites can 
show enhancements in ionic conductivity of up to three orders of magnitude compared 
to the pure homogeneous system (Liang 1973). Generally, this observation is attributed 
to an increased conductivity along the internal interface between the conductivity salt 
and the insulating material (Jow and Wagner 1979, Maier 1984, 1985, Poulsen 1985, 
Dudney 1985). In these composites, the ionic conductivity 2 first increases strongly with 
concentration p of the inert phase. After passing its maximum the conductivity drops 
down and seems to extrapolate to zero at some threshold concentration. The enhance- 
ment depends strongly on the size of the inert particles dispersed in the salt. The larger 
enhancements are found for smaller particles, e.g. the conductivity of AgI containing 
30 mole per cent of predried Al,03 at room temperature is increased by a factor of about 
40 for A1203 with particle size 0.6 pm, by a factor of 8 for 0.3 pm size particles and by a 
factor of 2 for 1 pm size particles, while for particles with larger dimensions (-8 pm) 
there is very little or practically no enhancement in (Shahi and Wagner 1981a). Similar 
results have been obtained for CuC1-Al2O3 (Chang et a1 1984) and for LiBr-A1,03 
(Nakamura and Goodenough 1982) systems. 

Recently, a random resistor model for dispersed ionic conductors (DIC) has been 
studied (Bunde et a1 1985, Roman et a1 1986). Basically, the model assumes that the 
insulating particles are randomly distributed in the system and the conductivity at the 
interface between an inert particle and the conducting matrix is enhanced with respect 
to its bulk value. A three-component random resistor network (RRN) model is then 
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Figure 1. The spherical random void model for solid electrolytes in two dimensions. The 
shaded disks (voids) of radius R represent the insulating particles which are allowed to 
overlap. Each particle is surrounded by a circular shell of width A which delimits the highly 
conducting interface region (of conductance uA).  The remaining free space represents the 
conductingsalt (of conductance uB). (a) Percolation of the interface region at aconcentration 
p = p :  ; (6) disruption of conduction paths (conductor-insulator transition) a t p  = p : ,  

constructed in which the conducting salt is represented by normally conducting bonds, 
the inert particles by insulating bonds and the interface region by highly conducting 
bonds. Effects on the conductivity of the composite due to changes in the size of the 
dispersed particles are taken into account in a generalised version of the RRN model 
(Roman and Yussouff 1987), where both size and shape of the particles can be varied; 
the conductances of the corresponding bonds take the same values as for the original 
model. An interesting feature of these RRN models is the existence of two percolation 
thresholds, p ;  and p :  , for percolation of interface (highly conducting) bonds and dis- 
ruption of conducting paths, respectively. To calculate the conductivity of the system, 
the resistor model is mapped onto a random walk problem (de Gennes 1976) and 
studied by Monte Carlo simulations. The calculations show that the RRN model correctly 
describes the macroscopic conductance properties observed in dispersed ionic con- 
ductors (Roman 1990a). 

In this paper we introduce a continuum percolation analogue of the RRN model for 
solid electrolytes which allows us to study analytically particle size effects on the static 
properties of the system. In addition, the associated non-universality aspects in the 
critical behaviour of the conductivity for such continuum percolation systems are dis- 
cussed and compared with the results for percolation models on the lattice. Finally, 
an attempt is made to calculate approximately the conductivity C of the continuum 
percolation model by using an effective medium approximation (EMA). This approxi- 
mation provides us with a simple but accurate scheme for obtaining Z far from the 
critical region. In this way we expect to describe, at least qualitatively, the macroscopic 
conduction properties of solid electrolytes. 

2. Static properties: percolation thresholds 

Let us start with the description of the model. Here we consider a variant of the spherical 
random void model (the ‘Swiss Cheese’ model) which is illustrated in figure 1 for the 
two-dimensional case. In this model an insulating particle dispersed in a conducting 
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matrix is represented by a sphere of radius R (insulator) surrounded by a highly con- 
ducting spherical shell of width A .  Typically, A is of the order of a few hundreds of 
angstroms as obtained, for instance, from calculations based on space-charge layers for 
the interfacial region in AgC1-Al2O3 (Dudney 1985). Here we denote the conductance 
of the salt by oB and the conductance of the interface region by uA. A similar description 
of a solid electrolyte in terms of spherical particles has been worked out recently using 
an effective medium approach (Brailsford 1986). The present model, however, admits 
a rigorous treatment of static and dynamic critical properties, near the percolation 
thresholds, and thus explores a different aspect of the problem. In particular, our aim is 
to describe the dependence of the conductivity ,X on particle radius R at low con- 
centrationsp, where particle size-effects play an essential role. 

The concentration p of randomly distributed overlapping spheres of radius R (the 
insulating phase) is given by 

where c = n when d = 2 and c = 4n/3 when d = 3, and p is the particle density. Equation 
(1) follows from the fact that the number of randomly distributedpoints (sphere centres) 
that are found within a distance R from a given point is determined by a Poisson 
distribution (see also Vicsek and Kertesz 1981). As displayed in figure 1, this model 
again has two percolation thresholds, p; andp: , for interface percolation and conductor- 
insulator transition, respectively. The critical concentration p: is known for this model, 
p :  = 0.6766 when d = 2 (Rosso 1989, Vicsek and KertCsz 1981) and p: = 0.966 when 
d = 3 (Kertesz 1981, Elam et a1 1984). Note that p: does not depend on the particle 
radius R. To determine pi we need to know the percolation threshold pc at which 
percolation of particles occurs. In two dimensions, it coincides with the threshold p: for 
percolation of the conducting region, while in three dimensions the percolation of 
spheres occurs at a concentrationp, = 0.28 5 0.007 which is much lower than p: (KertCsz 
1981). In this case, insulating particles and the conducting matrix percolate simul- 
taneously for the entire range of concentrationsp, G p s p: . Clearly p: will depend on 
the particle radius R (more precisely on the value of the shell radius R + A relative to 
R), since the probability for percolation of spheres of radius R + A is larger than for 
spheres of radius R for fixed number of particles. 

Let us denote by q = (R + A)/R the parameter which measures the effect of the 
particle size on p i .  To keep the number of parameters in the model to a minimum, we 
assume that neither A nor the conductance properties of the interface region depend on 
the particle radius R. This may be true for large R, i.e. in the limit R/A % 1. Accordingly, 
we expect that most physical situations will occur in the range 1 < q < 2, where the lower 
boundary corresponds to the limit R -+ x and the upper boundary to R = A. 

Now consider the percolation threshold, pc,  for spheres of radius R. It is easy to see 
that for R 9 A ,  i.e. for q 4 1, one obtains pi = pc since the relative width of the interface 
region vanishes. However, if the particle radius decreases, such that q + 2, we expect 
thatp; will decrease too. Using (l), we can find the actual concentration pi of particles 
of radius R at which spheres of radius R + A = qR (highly conducting shells) percolate. 
First, let us denote by p ,  the critical density in (1) for which spheres of radius qR 
percolate, i.e. p =pc = 1 - exp(-cqdRdpc). Since the particle density is p c ,  it follows 
that the concentrationp; of spheres of radius R isp; = 1 - exp(-cRdp,), which can be 
written using the above expression for pc as 

When d = 2, equation (2) gives 0.25 < p: < 0.688, and when d = 3,0.04 < p; < 0.28, 

p = 1 - exp(-cRdp) (1) 

p; = 1 - (1 -pc )1W (2) 
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Figure 2. Spherical random voids in two dimen- 
sions. (a) The ‘Swiss Cheese’ model where the 
disks are non-conducting. For small separations 6 
between spheres of radius R a n  effective con- 
duction channel of length QR6 is obtained. ( b )  
The inverted ‘Swiss Cheese’ model where the 
disks represent theconductingmaterial. For small 
apertures 6 the length of the equivalent channel 

(a1 ( b )  is -6. (After Feng et a1 1987.) 

as q varies from q = 2 to q = 1. On the other hand, p: does not depend on q for this 
model. Equation (2) is exact and constitutes the main result of this work. It gives the 
interface percolation threshold ps as a function of the highly-conducting shell radius 
R + A relative to the particle radius R. 

While the existence of the percolation thresholdp: is obvious from the behaviour of 
Z at large concentrationsp, the interface percolation threshold ps may be detected when 
the ratio t = a A / a B  becomes large (Blender and Dieterich 1987). This is important since 
near both thresholds a critical behaviour of the conductivity is expected as explained 
below. Before discussing transport properties, we note that according to (2) the per- 
colation thresholdp: in dispersed ionic conductors should be searched for larger particle 
sizes R,  where p: can become experimentally accessible. 

3. Dynamical properties: conductivity exponents 

It is well known that critical exponents for electrical conductivity in continuum per- 
colation systems can differ considerably from their counterparts in standard lattice 
percolation models (Feng et a1 1987). The present continuum percolation (CP) model for 
solid electrolytes shows similar behaviour. Let us first discuss the possible geometries 
which arise for the spherical random void model. These are displayed in figure 2 for the 
case where the voids represent an insulator as in figure 2(a), or a conductor immersed 
in a poor conductor as in figure 2(b). 

The ‘Swiss Cheese’ model (figure 2(a)) can be mapped onto a regular network 
with randomly occupied bonds, whose associated conductances a can have a singular 
distribution of strengths P(a) - a-w for a+ 0 with 0 < a < 1. If this is the case, the 
conductivity exponent fl in the power-law behaviour Z - (p: - p)P, p < p: , is given by 
fl =I p + a/(l - a) (Feng et a1 1987, Bunde et a1 1985), where p is the standard lattice 
value (Stauffer 1985). To determine a for this model, we first note that the channel 
which determines the critical properties of Z near p: has an associated conductance cr 
which scales as a - 6” for small channel width 6 (see figure 2(a)). The value of the 
exponent m is obtained by writing a a s  the ratio between the cross section of the channel 
divided by its effective length. Thus, m = 1/2 when d = 2 and m = 3/2 when d = 3. If 
the probability for the occurrence of channels with 6 + 0 is finite, one then finds a = 
1 - 1,”. We see that fo rd  = 2 the distribution is non-singular ( a  = - l ) ,  while ford  = 
3, a = 1/3 > 0 which leads to fl = p + 1/2. 

The inverted ‘Swiss Cheese’ model (figure 2(b)) is appropriate for studying a system 
where the spheres represent a very good conductor (with conductance aA) immersed in 
a poor conducting matrix (conductance aB). If the ratio t = oA/oB tends to infinity we 
can describe either a superconductor/conductor or a conductor/insulator system. In this 



A continuum percolation model 3913 

case no changes in the transport critical exponents occur since a < 0 in both two- and 
three-dimensional systems (Feng et a1 1987). 

Returning to our CP model for DIC we see that close to p" it behaves like the 'Swiss 
Cheese' model, while close to p; , for interface percolation, its critical properties for 
z -+ correspond to the inverted 'Swiss Cheese' model. For concentrationsp + p" we 
expect that 

C - (p"  -p)P 

with 
conductivity diverges as 

p + 1 = 2.6 when d = 3 (Roman 1990b), while for z-+ close to pi the 

- (P; - P E  (3b) 

forp < p; , withf = s = 0.7 when d = 3, wheres is the standard lattice superconductivity 
exponent. 

4. Transport properties: DC conductivity 

In this section we aim to describe macroscopic features of the conductivity of the 
system outside the critical region of concentrations. These calculations are relevant for 
describing the overall behaviour of C as a function of composition and particle size 
observed in the experiments. 

Similarly as for RRN models (Bunde et a1 1985, Roman and Yussouff 1987) one can 
map the continuum percolation model onto a random walk problem and obtain C by 
calculating the diffusion constant using Monte Carlo simulations. This approach has 
been already implemented for the random void model (Petersen et af 1989), in which a 
random walk with finite jump distance 1 and arbitrary jump direction in the continuum 
is simulated. For our present purposes, we choose a simple analytical approach to 
calculate the conductivity C based on the effective medium approximation (Kirkpatrick 
1973). This scheme has been shown to give accurate results for 2 outside the critical 
region when d = 3 for the RRN model of dispersed ionic conductors (Rojo and Roman 
1988). 

To implement the EMA for our model, we first calculate the volume fractions of the 
three components with conductances uo = 0 (the insulating phase), 0, (the highly 
conducting phase) and 0, (the normally conducting phase). We denote the volume 
fractions, respectively, by Po,  PA and PB. Using (1) we have 

Po(P) = P (4a) 

In reality, there is a fourth type of conductance uc, of the small channels 6 between 
insulating particles (see above) which has been deliberately left out here since it only 
plays a role close to the critical threshold p: . 
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In order to calculate I:, we map the continuum percolation model onto a random 
resistor model (defined on a d-dimensional cubic lattice), where the bonds have associ- 
ated conductances uo, U, and uB. The corresponding concentrations (or volume 
fractions) are given by (4) and the probability n(u) of bonds reads 

n(‘) = PO(p)6(u) + P.4 (p )G(u  - 

I:(p) uB(-A + [ A 2  + 2 t ( ~  - 2 - zPO)]~’~}/(Z - 2) 

A = t[l - (ZP,(P))/21 + [1 - (ZPB(P))/21. 

+ PB(p)G(u - OB). ( 5 )  

(6) 

Finally, 2 is obtained in the usual way (Rojo and Roman 1988) and reads 

where z is the coordination number and 

From (6) we obtain the percolation thresholds: (i) p :  at which I: = 0 occurs for Po = 
( z  - 2)/2, (ii) p i  at which I: + x. for z + CC and which occurs when A changes sign (for 
z sufficiently large), i.e. P, (p )  = 2/z. Strictly speaking, the latter relation admits in 
general two solutions pA1 and pL2 (PAl < p & )  (Kogut and Straley 1979), of which the 
smaller value corresponds to p i .  For values p < pS1 and p > pA2, C remains finite as 
z + =. For the random resistor model in three dimensions it turns out that pS2 = p :  
(Rojo and Roman 1988). 

Some useful properties of I: can be readily obtained from (6). For pL1 < p < pA2 and 
z 9 1 we have 

X(P> = [2 / (z  - 2)1[(Z/2)P*(P) - 112 (7) 
which depends linearly on z. The maximum of 2 occurs when P A ( p )  attains its maximum, 
i.e. at aconcentrationp,,, = 1 - q - d / ( q d - l ) .  

111 the following we restrict our discussions to the three-dimensional case. In mapping 
the continuum model onto a lattice, we imagine we hav? made the continuum space 
discrete by introducing a regular mesh of points separated by a (lattice) distance a which 
is sufficiently small, a < A. In doing so, we obtain large portions of the network within 
which the same type of bonds are present. This would correspond to a highly correlated 
bond percolation problem, in which the bonds of the lattice are not occupied completely 
at random. Such correlations may be interpreted in terms of a larger coordination 
number z (more than nearest-neighbour interactions) for a completely random system 
(without correlations). Since we do not know a priori the coordination number, z is 
treated as a free parameter in this theory. To determine 2 we impose that P , ( p : )  = 
( z  - 2)/2 = pg = 0.966 (d = 3), thus z = 59. Note that one can instead fix z such that it 
be consistent with the threshold ph(q) as given by (2). Here we follow the first pre- 
scription which deals with a constant z ,  independent of q ,  since the final results are 
qualitatively similar in both cases. 

Let us analyse in more detail the EMA predictions for the threshold p i  . From (4b) 
and (6) we obtain p ;  as a solution of the equation 

Using the relation 1 - 2/2 = p : ,  (8) can be written as 

This equation for p i  as a function of q can be compared with the exact result (2) or 
equivalently 

The EMA result (9) coincides with the exact value (10) for a p i  such that pz  = 1 - p c  + 

2/2 = 1 - p ;  - (1 - p y d .  

p :  = p i  + (1 - p p d .  

1 - p c  + p ;  = p ;  + (1 - p i y d .  

(8) 

(9) 

(10) 
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Figure 3. Conductivity versus concentration p of the insulating phase, of the continuum 
percolation model for solid electrolytes according to the EMA. The curves (from top to 
bottom) correspond to values t = 3500, 2500, 1500 and 500, respectively. In all cases the 
value = ( R  + A)/R = 1.05175 was used. The EMA thresholds pLi,p[z andp: are indicated 
by arrows. 

p :  ,which when d = 3 corresponds top;  = 0.246 and q = 1.05175. Compared to (2), the 
EMA result (9) gives reasonable results in the range 1.04 6 q S 2, which corresponds to 
0.35 2 p; 2 0.005. Therefore the present theory applies for particle sizes R such that 

We have now all the ingredients to calculate the conductivity using (6). Results for 
2 are shown in figures 3 and 4. The parameters were chosen to illustrate the different 
shapes of C that can be obtained within this scheme. Figure 3 (for R/A = 19 and different 
t values) corresponds to a typical parabolic behaviour of E, as observed, e.g. in LiI- 
A1203 (Poulsen 1985), for different temperatures. For this value of q (=1.05175), the 
EMA threshold pL1 coincides with the exact value from (2) as discussed above. The t- 
dependence of C displayed in figure 3 can be related to the temperature dependence of 
I: observed experimentally by assuming thermally activated conduction processes (see, 
e.g. Roman 1990a). Figure 4 illustrates the effect of varying the particle size, where we 
see that for R = A a different shape of 2 is obtained, reminiscent of that found in AgI- 
fly ash (Shahi and Wagner 1981b). Finally, we report in figure 5 calculated values of C as 
a function of particle radius R/A for fixed p and t. These results reproduce almost 
quantitatively the experimental values obtained for LiBr-Alz03, and constitute a further 
support for the validity of the present model. 

In summary, we have introduced a continuum percolation model for solid electrolytes 
which differ substantially from other continuum models described in the literature. 
We are able to obtain analytical expressions for the particle size dependence of the 
percolation thresholds of the model in both two and three dimensions. Thus the present 
study complements previous numerical work on size effects restricted to two-dimen- 
sional systems (Roman and Yussouff 1987). These results suggest that the critical 
behaviour of the conductivity in dispersed ionic conductors, near the so-called con- 
ductor-superconductor threshold p ;  , should be searched for large particle sizes where 
p ;  can become experimentally accessible ('p: = 0.2:0.3 in three dimensions). Finally, 
an attempt is made to calculate the overall dependence of C on concentration, enhanced 

A 6 R 6 2%. 
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Figure 4. Same as in figure 3 but with z = 50. The different curves correspond, from top to 
bottom, to different values of 77 = 2,1 .7 ,  1.4 and 1.1. 

interface conductance and particle size. The results, obtained within an effective medium 
approximation for three-dimensional systems, are in good qualitative agreement with 
the different shapes of 2 found in the experiments. 
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